الاسم:

الدرجة: • • • ٤ ، المدة: ثلاث ساعات

التاريخ:

الامتحان الفصلي الأول لدوام الظهـــر الفيـــــزيـــاء الثالث الثانوي العلمي (٢٠٢٠ – ٢٠٢١)

أولاً: اختر الإجابة الصحيحة: (10 درجات لكل إجابة)

: فإن دوره الخاص ($\ell = \frac{1}{4} m$)	. نواس ثقلي بسيط طوله
---	-----------------------

 $T_0 = 4s$ C $T_0 = 1s$ C $T_0 = \frac{1}{4}s$ C $T_0 = 2s$ C

ور الكتلة بكتلة (m) معلقة بنابض ثابت صلابته (K)، نستبدل الكتلة بكتلة (m)، علقة بنابض ثابت صلابته (K)، نستبدل الكتلة بكتلة (M)،

و النابض بنابض آخر ثابت صلابته $(K' = \frac{K}{2})$ ، فيصبح الدور الخاص الجديد:

 $T'_{0} = \frac{T_{0}}{2} \left| \mathcal{A} \right| \qquad T'_{0} = 4T_{0} \left| \mathcal{C} \right| \qquad T'_{0} = 2T_{0} \left| \mathcal{B} \right| \qquad T'_{0} = T_{0} \left| \mathcal{A} \right|$

. سائل مثالي يجتاز انبوب سرعة انسياب السائل (v_1)، نجعل مساحة الفتحة ($S_2 = \frac{1}{4}S_1$) فتصبح السرعة الجديدة \mathbf{S}_1

 $v_2 = \frac{1}{2}v_1$ (d $v_2 = 4v_1$ (c $v_2 = \frac{v_1}{4}$ (b $v_2 = v_1$ (a

 $oldsymbol{\Theta}$. إن شدة قوة لورنز المغناطيسية تكون عظمى عندما يصنع شعاع الحقل مع شعاع السرعة زاوية ($oldsymbol{ heta}$):

 $\theta = \frac{\pi}{3} \text{ rad}$ (d $\theta = \pi \text{ rad}$ (c $\theta = \frac{\pi}{2} \text{ rad}$ (b $\theta = 0$ (a

ثَانِياً: فسر علمياً كلاً ما يلي: (لكل سؤال 15 درجة)

- سبب نشوء الحقل المغناطيسي الأرضي.
- 2. في الميكانيك النسبي، الكتلة تزداد بزيادة السرعة ، من أين تأتي هذه الزيادة؟

ثَالثاً: أجب عن ثلاثة أسئلة فقط من الأسئلة الآتية: (لكل سؤال 30درجة)

- $X=X_{max}\;cos\;\omega_0\;t$. إنّ التابع الزمني للمطال في الحركة التوافقية البسيطة هو: $oldsymbol{0}$
 - A. استنتج التابع الزمني للسرعة ، ثمّ اكتب القيمة العظمى للسرعة طويلة.
 - B. ارسم خطه البياني خلال دور، ثمّ بين أين تنعدم السرعة و أين تكون عظمي؟
- انضع نواة حديدية بين قطبي مغناطيس نضوي حقله المغناطيسي منتظم، ماذا تشاهد مع التعليل؟ ثم اكتب عبارة عامل الإنفاذ المغناطيسي، وبيّن بماذا يتعلّق هذا العامل؟
- \overline{B} . يدخل إلكترون بسرعة (\overline{v}) إلى حقل مغناطيسي منتظم (\overline{B}) ناظمي على شعاع السرعة ، بإهمال ثقل الإلكترون: ادرس حركته داخل الحقل وبيّن طبيعتها ، ثم استنتج عبارة نصف قطر المسار الذي يرسمه ، و دور الحركة ، و هل يتعلّق الدور بسرعة الإلكترون؟
- ق. أنبوب أفقي مختلف المقطع (انبوب فنتوري) يحوي فتحتين ($S_1 > S_2$)، يجتازه سائل مثالي، استنتج عبارة فرق الضغط بين فتحتى الأنبوب.

ثالثاً: حل المسائل الآتية: (80 درجة لكل مسألة)

المسألة الأولى:

حلقة دائرية كتلتها (m=2 Kg)، و نصف قطرها (m=2 M)، نعلقها شاقولياً بواسطة محور أفقي عمودي على مستويها و يمر من نقطة تقع على محيطها بحيث تشكّل نواساً ثقلياً مركّباً، و المطلوب:

- استنتج عبارة الدورة بدلالة نصف القطر، واحسب قيمته بدءاً من الدور الخاص للنواس الثقلي المركب.
 - استنتج قيمة طول النواس البسيط المواقت.
- الحركية عن وضع التوازن بزاوية كبيرة (θ_{max}) و تركناها بدون سرعة بدائية ، استنتج قيمة الطاقة الحركية الخالفة عندما يهبط مركز عطالتها بمقدار ($h=\frac{1}{4}m$)، ثم احسب السرعة الزاوية للحلقة في هذا الوضع.
 - استنتج قيمة الزاوية ($heta_{max}$).

$$(\pi^2 = 10$$
 , $g = 10 \, m.s^{-2}$, $I_{\Delta/C} = m.r^2$) علماً أن

المسألة الثانية:

يبلغ نصف قطر دولاب بارلو (r=10~cm)، نمرر به تيار ڪهربائي شدته (I=5~A)، و نعرض نصفه السفلي إلى حقل مغناطيسي منتظم عمودي على مستوي الدولاب شدته ($B=10^{-1}~T$) فيدور الدولاب بسرعة زاوية ثابتة تواترها ($f=\frac{10}{\pi}~Hz$)، و المطلوب:

- π ، و ،مطبوب. • ارسم الشكل، ثم احسب شدة القوة الكهرطيسية المؤثرة في الدولاب و عيّن بقية العناصر.
 - 2. احسب عزم القوة الكهرطيسية حول محور الدوران.
 - 3. احسب الاستطاعة الميكانيكية الناتجة.
- احسب العمل الذي يقدّمه الدولاب خلال (2 5)، ثمّ احسب السرعة الخطية لنقطة من محيط الدولاب.

المسألة الثالثة:

ساق أفقية مهملة الكتلة طولها (20~cm) نعلقها من منتصفها بسلك فتل شاقولي إلى نقطة ثابتة ، ثمّ نضع في كل من نهايتي الساق كتلة نقطة مقدارها ($m_1=m_2=50~g$) بحيث تشكل الجملة نواس فتل ، نحرف الساق في مستويها بزاوية

(θ =45 $^{\circ}$) و نتركها تهتز بحركة جيبية دورانية دورها الخاص (T_{0} =1 S)، و المطلوب:

- استنتج التابع الزمني للحركة من شكله العام، باعتبار مبدأ الزمن هو لحظة ترك الساق بدون سرعة بدائية من مطالها
 الزاوي الأعظمي الموجب.
 - 2. احسب ثابت فتل سلك التعليق، ثمّ احسب الطاقة الميكانيكية للجملة.
 - . احسب التسارع الزاوي و عزم الإرجاع و الطاقة الكامنة و الحركية عندما ($\theta = -30^{\circ}$).
- $(\pi^2 = 10)$ أن أن عليه، ماذا يصبح الدور الخاص الجديد للحركة. علماً أن $(\pi^2 = 10)$

**انتھت الأسئلة